
The Langevin method in the statistical dynamics of learning

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L763

(http://iopscience.iop.org/0305-4470/23/15/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L763-L766. Printed in the UK 

LETTER TO THE EDITOR 

The Langevin method in the statistical dynamics of learning 
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Karl-Marx-Universitat Leipzig, Sektion Informatik, FG Neuroinformatik, Karl-Marx-Platz 
10-1 1, Leipzig 7010, German Democratic Republic 

Received 1 February 1990 

Abstract. The statistical dynamics of learning in the presence of noise has been treated 
recently by Hertz, Krogh and Thorbergson using a Langevin model. Fluctuations introduced 
by this model into the space orthogonal to the space of patterns are shown to influence 
the dynamics of learning in a spurious way. This is avoided in the new Langevin model 
in which the noise is introduced directly into the cost function by using randomly modulated 
training patterns. Correspondingly a new kind of response function is defined. Uncon- 
strained learning and learning under constrained thermal fluctuations are discussed as 
examples. Explicit expressions-e.g. for the learning time-are found to differ substantially 
from those given by Hertz et al. 

The efficiency of learning procedures in layered neural networks has been of much 
interest recently. The problem may be traced back to that of minimising a given cost 
function by some kind of gradient descent. With the presence of noise this is a statistical 
dynamical problem which was formulated recently by Hertz, Krogh and Thorbergson 
( HKT) in the framework of the Langevin method, cf [ 11. There the noise was introduced 
ad hoc into the dynamical equation describing the gradient descent. This leads to 
spurious noise contributions in the space Q orthogonal to the space I’ of the patterns, 
as will be discussed in more detail below. The present letter proposes a convenient 
reformulation of this method by starting from a time-dependent cost function which 
formulates the problem of learning under noise in a different way. 

Let us consider, as in [l], a one-layer perceptron which is to associate a set of p 
input patterns 57, p = 1,. . . , p ;  i = 1,. . . , N with a certain output unit taking given 
training values p”. The cost function measures the distance d” = p ”  - p ”  between the 
values p” of the output unit and the post-synaptic potential p ”  = ( 1/v%)Ji5r. For the 
sake of simplicity in the present letter both 5 and p are assumed to be random numbers 
with zero mean. Note that here sums run over all indices occurring twice (Einstein 
convention) of Roman or Greek letters from 1 to N or 1 to p ,  respectively. 

The peculiarity of the cost function to be proposed consists of random modulations 
of the training value p” caused by a time-dependent stochastic process f ” ( t )  added 
to it (noisy trainer). The complete cost function E ( t )  then is given by 

(1) 2 E ( t )  = E  ( d ” + f ” ( t ) ) 2 +  c 1 J: 

(f”(t)) = 0 ( f W ( t ) f ” ’ ( t ’ ) ) = 2 T 6 ( t -  t’)8p+, (2) 

CI 1 

where c is the chemical potential, cf [l]. f( t )  is a Gaussian white noise given by 

where (. . .) means the average over the noise and the fictitious temperature T measures 
the strength of the noise. 
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Learning corresponds to changing the synaptic strength proportional to the negative 
gradient of E, AJ, - -aE/aJ, .  Because of the occurrence of the stochastic process f ( t )  
this gradient is noisy so that the approach to the minimum of E corresponds to a 
stochastic dynamics. This leads in continuous time to the generalised Langevin equation 

j ,  = -D,,,J, + B, + b,( t )  (3) 

where the overdot denotes the time derivative and 

D!, J = J + “t J = ( / N ,  tr 6; 
(4) 

B, = ( l / m ) t r P ”  and b , ( t )  = ( l / JN)f”( t )S t .  

The constant of proportionality was included into the unit of time. The noise now acts 
in the space of the patterns only, whereas in [ l ]  the noise was introduced into the 
Langevin equation ad hoc and is found to act in the entire space. 

The difference between the two approaches is seen best by considering the fluctu- 
ation dissipation theorem (FDT), cf [2]. We define a J , ( t )  = J , ( t )  -(J,)eq where (Jlleq = 
0;: BJ, is obtained from (3) in using ( j )  = 0 in equilibrium, cf [ 11. From the explicit 
(formal) solution of (3) we obtain for very large times t 

sJl(t)=(l/JN) lo‘ dt’(exp[-(t-t’)D1)l,Jt~f-f(t‘) 

and hence using (2) 

C:= ( I / N )  lim(aJi(t)’) 
t-m 

= (1/N)((Ji2)eq- ((Ji)eq)*) 

= T (  1 - cG) 

= ( T /  N )  Tr( AD-’)  

( 5 )  

(sum over i implied) where Tr denotes the trace of a matrix and G := ( I /  N )  Tr( D-’) 
obeys the equation 

G = l / ( c + a / ( l + G ) )  (6) 

C = aTG/( l+  G). ( 7 )  

a = p / N ,  as derived earlier by HKT, cf also [3]. Using (6) we may obtain from (5) 

Equation (7) is an anomalous FDT. An FDT of the usual kind is obtained by way 
of introducing a new response function r which represents the response of the post- 
synaptic potential (the signal) p”  with respect to a variation of the training value p” 
of the output unit, i.e. 

r := ( 1 / N)a( PF )eq/aP/-l (8)  
where ( p ” ) , ,  = ( l / ~ ‘ ~ ) ( J , ) , ~ t ? ,  (Jt)eq = DLiB,, cf equation (12) of [l].  r is easily 
evaluated as r = aG/(  1 + G), hence 

C = Tr ( 9 )  
is a FDT of the usual kind so that r is seen to be the proper response function conjugate 
to the correlation function C. 

Using (6), r is found to obey the exact equation 

r = 1/( 1 + c / ( a  - r ) )  (10) 
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with solution 

2r = 1 + a  + C - J ( I  + a  + c 1 2 - 4 a .  

The negative radical is appropriate here since from (8) we immediately verify that for 
c + 00 we have r = a / c  in agreement with (1 1). The most important difference between 
our response function r and the G of HKT is found in the fact that G has a pole at 
c = 0 whereas r is regular there. 

Central system quantities are readily expressed in terms of our response function 
r. For instance the analogue of the Edwards-Anderson order parameter q =  
(l/N)((J,)eJ2 (cf equation ( 2 5 )  of [l]) is 

q = - r t  = r ’ / ( a  - r 2 )  

r = - r ’ / r  = q / r .  

(12 )  

where rt = ar /dc  was obtained from (10). For the learning time r we find the expression 

(13) 

The essential difference between the two approaches is seen clearly from considering 
r at small c > 0 where T = (1 - a)-’ + O( c )  in our theory. Here r is the time of learning 
corresponding to the relaxation process in pattern space P. For the HKT model we 
obtain r = c-’ + O( c). This is the relaxation time of the slowly decaying component of 
J in Q space (orthogonal to the patterns) which has nothing to do with the dynamics 
of learning. 

On more general grounds the difference between the two approaches discloses in 
the different meanings of the corresponding FDTS, i.e. (9) in our case and 

C = T G  (14 )  

in the HKT case. The FDTS allow us to express q and r directly in terms of C which 
is the mean square deviation of J caused by the noise from its equilibrium value. Let 
us consider learning under constrained thermal fluctuations, i.e. we assume C = S’, 
S 2  given. Then using (9) we find r = S2/ T and hence 

q = a / ( a , - a )  7 = (Jao)/(ao- a ) .  (15) 

Here a,= (S*/aT)’ whereas a,,= (1 + T / S 2 ) ’  in [l]. 
The case of unconstrained learning is included now since a. is continuous at c = 0 

where cyo = 1. Note also that with T -$ 0 also S2+ 0, since there are no fluctuations 
without noise. Hence, a. is always finite. 

Equations (15) connect the characteristic quantities q and T with S2, i.e. with the 
strength of the synaptic fluctuations. These expressions are seen to be essentially 
different from the corresponding expressions of HKT. Obviously, this results from the 
different meanings of S’ connected with the different nature of the fluctuations entering 
the theory. In our case S’ measures the fluctuations in P space which are directly 
connected with the dynamics of learning via the FDT (9). In HKT S’ comprises also 
the fluctuations in Q space which are spurious with respect to the learning procedure. 
Nevertheless they are never negligible and even prevail for small c. 

The difference between the two approaches is particularly transparent if the learning 
starts from the tabula rasa condition ( J ( 0 )  = 0 )  or from the Hopfield matrix, i.e. 
J(0) = B, cf (4). Then in our model the Q space is empty at all times whereas in the 
HKT model there are fluctuations in Q space with a strength increasing in time from 
zero up to its equilibrium value which is of order l / c  for small c. Hence a convenient 
description of the statistical dynamics of learning should always include fluctuations 
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only in the space of the patterns as has been done in the present letter. More details 
and further applications of the present approach, e.g. to the model by Opper [2], cf 
also [3], will be given in a forthcoming paper. 
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